Abstract

Hippocampal rhythmic slow wave activity (theta) has been implicated in the processing of stimuli associated with movement. This study determined whether the theta rhythm showed phase relationships or changes in amplitude and frequency with the onset of stimuli and behavioral sequences in a skilled locomotor approach task. Rats with bipolar electrodes spanning CA1 approached a stall, turned to enter it, approached and depressed a treadle, waited 1.35 s, and approached a milk reward located forward either to the right or to the left. Auditory cues indicated the location of the reward during the waiting period and at the reward onset. A video capture system (20-ms sampling) was synchronized to the hippocampal recording system (10-ms sampling). Behavioral events identified by motion analysis were used to generate averages of hippocampal slow wave activity, theta peak amplitudes, and intervals between peaks. Theta activity at 8-10 Hz was almost continuous during the behavioral sequences. Phase relations with stimuli or movement onsets occurred infrequently and were not consistent across the four subjects. Theta peak amplitude and frequency decreased as the rat slowed locomotion in the stall and reached the treadle. Onset of locomotion directed to a reward location occurred on a positive peak of averaged theta activity. When locomotion had short latencies, increases in theta frequency appeared after the onset but, when it had longer latencies, frequency increases appeared 200 ms before onset. The results indicate that the execution of instrumental movement modulates both theta amplitude and frequency, and that the preparation for locomotion modulates theta frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call