Abstract

This work delves into studying the synchronization in two realistic neuron models using Hodgkin-Huxley dynamics. Unlike simplistic pointlike models, excitatory synapses are here randomly distributed along the dendrites, introducing strong stochastic contributions into their signal propagation. To focus on the role of different synaptic locations, we use two copies of the same neuron whose synapses are located at different distances from the soma and activated by identical Poisson distributed pulses. The synchronization is investigated through a specifically defined spiking correlation function, and its behavior is analyzed as a function of several parameters: inhibition weight, distance from the soma of one synaptic group, weight and decay time constants of the excitatory synapses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.