Abstract

Multiple in vivo studies have shown that place cells from the hippocampus replay previously experienced trajectories. These replays are commonly considered to mainly reflect memory consolidation processes. Some data, however, have highlighted a functional link between replays and reinforcement learning (RL). This theory, extensively used in machine learning, has introduced efficient algorithms and can explain various behavioral and physiological measures from different brain regions. RL algorithms could constitute a mechanistic description of replays and explain how replays can reduce the number of iterations required to explore the environment during learning. We review the main findings concerning the different hippocampal replay types and the possible associated RL models (either model-based, model-free, or hybrid model types). We conclude by tying these frameworks together. We illustrate the link between data and RL through a series of model simulations. This review, at the frontier between informatics and biology, paves the way for future work on replays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.