Abstract

Growing evidence suggests that diabetes can cause multifactorial damage to the central nervous system (CNS) and may lead to dementia. However, the underlying mechanism of diabetes-induced central neuropathy remains sparse. In recent years, proteomics has provided better methods and means in analyzing the molecular mechanisms of disease. We applied proteomics to investigate the changes of hippocampal proteins in diabetic rats, with a view to discover the biomarkers of diabetes-induced central neuropathy and elucidated the potential biological relationships. Male Wistar rats were randomly divided into the control group and model group. The model group rats were injected intraperitoneally with streptozotocin. Morris water maze test was performed to evaluate the learning and memory of rats, and the hippocampus was taken out. Proteomics were adopted to investigate the changes of differentially expressed proteins. Compared with the control group, the escape latency of the diabetic rats was significantly increased (P < 0.01, P < 0.05). It was presented that four differentially expressed proteins might be the potential biomarkers of diabetes-induced central neuropathy: septin 5, GRB2 related binding protein 2 (GAB2), casein kinase 1ε (CK1ε), aquaporin 4 (AQP4). These differentially expressed proteins were mainly involved in the following signaling pathways: apoptosis, glycine/serine/threonine metabolic and GTPase signaling pathway. These findings provided reference insights into the underlying molecular pathogenesis of diabetes-induced CNS neuropathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call