Abstract

We investigated whether the interaction between the N-ethyl-maleimide-sensitive fusion protein (NSF) and the AMPA receptor (AMPAR) subunit GluR2 is involved in synaptic plasticity in the CA1 region of the hippocampus. Blockade of the NSF–GluR2 interaction by a specific peptide (pep2m) introduced into neurons prevented homosynaptic, de novo long-term depression (LTD). Moreover, saturation of LTD prevented the pep2m-induced reduction in AMPAR-mediated excitatory postsynaptic currents (EPSCs). Minimal stimulation experiments indicated that both pep2m action and LTD were due to changes in quantal size and quantal content but were not associated with changes in AMPAR single-channel conductance or EPSC kinetics. These results suggest that there is a pool of AMPARs dependent on the NSF–GluR2 interaction and that LTD expression involves the removal of these receptors from synapses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.