Abstract

Synaptic plasticity at hippocampal excitatory synapses has been proposed as the cellular mechanism underlying spatial learning and memory. However, most previous studies have focused on the role of long-term potentiation (LTP) in learning and memory, and much less is known about the role of long-term depression (LTD). Here, we report that hippocampal-dependent spatial learning in the Morris water maze facilitated hippocampal CA1 LTD induction in vivo. The LTD can be blocked by systemic application of the selective GluN2B antagonist Ro25-6981 (6 mg/kg, i.p.) or a synthetic peptide Tat-GluA23Y (3 μmol/kg, i.p.) that interferes with the endocytosis of AMPA receptors. In addition, systemic or intrahippocampal administration of these two mechanistically and structurally distinct inhibitors impaired spatial reversal learning of a novel target location, when the hidden platform was moved to the quadrant opposite the initial target location. Notably, acute elevated-platform stress, which facilitates hippocampal LTD induction, enhanced both acquisition and retrieval of spatial reversal memory. The present study demonstrates that reversal learning is impaired by blocking hippocampal LTD, and enhanced by facilitating hippocampal LTD, suggesting that hippocampal LTD may be necessary and sufficient to mediate new information processing.This article is part of a Special Issue entitled ‘Cognitive Enhancers’.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.