Abstract

In situ hybridization and Northern blots were used to study expression of mRNAs for members of the nerve growth factor family in the rat brain following an excitatory stimulus. One hour after a unilateral needle insertion or saline injection into the dorsal hippocampus, the level of brain-derived neurotrophic factor (BDNF) mRNA increased markedly in granular neurons of the dentate gyrus and in the piriform cortex ipsilateral to the injection. The same treatment also increased the level of NGF mRNA in granular neurons of the ipsilateral dentate gyrus. The rapid increase in BDNF and NGF mRNA after a needle insertion or injection of saline was transient and preceded by an increase in c-fos mRNA in the same brain regions. In contrast to a needle insertion per se or a saline injection, 7 h after a unilateral injection of kainic acid into the dorsal hippocampus, the level of BDNF mRNA was dramatically increased in the ipsilateral hippocampus, as well as in the ipsilateral frontoparietal, piriform and perihinal cortex, the amygdaloid complex, claustrum, and ventromedial hypothalamus. A less pronounced increase was also seen in these brain areas on the contralateral side. Northern blots revealed that the level of BDNF mRNA increased 5- and 40-fold in the contra- and ipsilateral hippocampus, respectively, compared to sham-operated control animals. In contrast to BDNF and NGF, the level of hippocampus-derived neurotrophic factor/neurotrohin-3 (HDNF/NT-3) mRNA was not altered by either needle insertion or injection of saline or kainic acid. These results indicate that hippocampal damage differentially induces expression of the NGF family of neurotrophic factors in the brain and suggest further that BDNF mRNA expression in the brain is markedly enhanced by an increased synaptic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.