Abstract

Age-related cognitive deficits in both humans and experimental animals appear to relate to dysfunction of basal forebrain cholinergic neuron systems. The present study assessed spatial learning performance in a water maze task as a function of choline acetyltransferase and high-affinity choline uptake specific activity (the two phenotypic markers for cholinergic neurons) in frontal cortex, hippocampus and striatum of aged male Fischer-344 rats. We observed that increased hippocampal choline acetyltransferase activity was related to better performance on the water maze task, and that, of the individual measures, hippocampal choline acetyltransferase activity was the best predictor of behavioral performance in the spatial learning task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.