Abstract
BackgroundProjections from hippocampal CA1-subiculum (CA1/SB) areas to the prefrontal cortex (PFC), which are involved in memory and learning processes, produce long term synaptic plasticity in PFC neurons. We examined modifying effects of these projections on nociceptive responses recorded in the prelimbic and cingulate areas of the PFC.ResultsExtracellular unit discharges evoked by mechanical noxious stimulation delivered to the rat-tail and field potentials evoked by a single stimulus pulse delivered to CA1/SB were recorded in the PFC. High frequency stimulation (HFS, 100 Hz) delivered to CA1/SB, which produced long-term potentiation (LTP) of field potentials, induced long-term enhancement (LTE) of nociceptive responses in 78% of cases, while, conversely, in 22% responses decreased (long-term depression, LTD). These neurons were scattered throughout the cingulate and prelimbic areas. The results obtained for field potentials and nociceptive discharges suggest that CA1/SB-PFC pathways can produce heterosynaptic potentiation in PFC neurons. HFS had no effects on Fos expression in the cingulated cortex. Low frequency stimulation (LFS, 1 Hz, 600 bursts) delivered to the CA1/SB induced LTD of nociceptive discharges in all cases. After recovery from LTD, HFS delivered to CA1/SB had the opposite effect, inducing LTE of nociceptive responses in the same neuron. The bidirectional type of plasticity was evident in these nociceptive responses, as in the homosynaptic plasticity reported previously. Neurons inducing LTD are found mainly in the prelimbic area, in which Fos expression was also shown to be inhibited by LFS. The electrophysiological results closely paralleled those of immunostaining. Our results indicate that CA1/SB-PFC pathways inhibit excitatory pyramidal cell activities in prelimbic areas.ConclusionPressure stimulation (300 g) applied to the rat-tail induced nociceptive responses in the cingulate and prelimbic areas of the PFC, which receives direct pathways from CA1/SB. HFS and LFS delivered to the CA1/SB induced long-term plasticity of nociceptive responses. Thus, CA1/SB-PFC projections modulate the nociceptive responses of PFC neurons.
Highlights
Projections from hippocampal CA1-subiculum (CA1/SB) areas to the prefrontal cortex (PFC), which are involved in memory and learning processes, produce long term synaptic plasticity in PFC neurons
high frequency stimulation (HFS) delivered to CA1 regions induced NMDA (N-Methyl-D-Aspartate)-mediated long-term potentiation (LTP) in the PFC [8], indicating CA1-PFC pathways to be the site of postsynaptic excitatory potentiation
HFS/low frequency burst stimulation (LFS) delivered to the CA1/SB induced LTP/long-term depression (LTD)-like changes in nociceptive responses recorded in the PFC, suggesting the HP-PFC pathway to be involved in affectional memory in pain processing
Summary
Projections from hippocampal CA1-subiculum (CA1/SB) areas to the prefrontal cortex (PFC), which are involved in memory and learning processes, produce long term synaptic plasticity in PFC neurons. The two segregated central pathways for sensory-discriminative and affective dimensions of pain have been examined in human brain imaging studies [1], which indicated that neural activities of the prefrontal cortex (PFC) participate in the affectional dimension of pain [2,3]. Responses to noxious heat stimulation in the bilateral HP were markedly increased in an anxious state as compared to circumstances not associated with anxiety [12]. These reports suggest that HP might be involved in the affectional dimension of pain
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.