Abstract

Organogenesis is a complex developmental process, which requires tight regulation of selector gene expression to specify individual organ types. The Pax6 homolog Eyeless (Ey) is an example of such a factor and its expression pattern reveals it is dynamically controlled during development. Ey׳s paralog Twin of eyeless (Toy) induces its expression during embryogenesis, and the two genes are expressed in nearly identical patterns during the larval stages of development. While Ey must be expressed to initiate retinal specification, it must subsequently be repressed behind the morphogenetic furrow to allow for neuronal differentiation. Thus far, a few factors have been implicated in this repression including the signaling pathways Hedgehog (Hh) and Decapentaplegic (Dpp), and more recently downstream components of the retinal determination gene network (RDGN) Sine oculis (So), Eyes absent (Eya), and Dachshund (Dac). Homeodomain-interacting protein kinase (Hipk), a conserved serine–threonine kinase, regulates numerous factors during tissue patterning and development, including the Hh pathway. Using genetic analyses we identify Hipk as a repressor of both Toy and Ey and show that it may do so, in part, through Hh signaling. We also provide evidence that Ey repression is a critical step in ectopic eye development and that Hipk plays an important role in this process. Because Ey repression within the retinal field is a critical step in eye development, we propose that Hipk is a key link between eye specification and patterning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.