Abstract

A modelling approach was used in the present study to investigate the role of the hip muscles during the come-out of forward and inward multiple somersaulting dives in a pike position. A planar two-segment model was used to simulate the somersault and come-out of three commonly performed dives from a 3-m springboard: forward two-and-one-half somersault pike dive (105B), forward three-and-one-half somersault pike dive (107B), and inward two-and-one-half somersault pike dive (405B). Three simulations were run for each dive: (1) hip angle was constrained to be constant, (2) hip torque was removed after 0.1 s, and (3) hip angle was constrained to a typical come-out time history used by elite divers. Simulation results indicated that hip flexion torque was required both to maintain a rigid pike position during somersault (range = 205.5–282.3 Nm) and to control the hip extension movement during the come-out (peak torque range = 355.8–548.1 Nm) in forward and inward multiple somersaulting dives. Coaches and divers should be aware that dry-land exercise drills producing hip extension movement by concentric actions of the hip extensor muscles do not replicate the neuromuscular control during the come-out of fast rotating dives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.