Abstract

A possible way out of the conundrum of quantum gravity is the proposal that general relativity (GR) emerges from an underlying microscopic description. Despite recent interest in the emergent gravity program within the physics as well as the philosophy community, an assessment of the general motivation for this idea is lacking at the moment. We intend to fill this gap in the literature by discussing the main arguments in favour of the hypothesis that the metric field and its dynamics are emergent. First, we distinguish between microstructure inspired from GR, such as through quantization or discretization, and microstructure that is not directly motivated from GR, such as strings, quantum bits or condensed matter fields. The emergent gravity approach can then be defined as the view that the metric field and its dynamics are derivable from the latter type of microstructure. Subsequently, we assess in how far the following properties of (semi-classical) GR are suggestive of underlying microstructure: (1) the metric's universal coupling to matter fields, (2) perturbative non-renormalizability, (3) black hole thermodynamics, and (4) the holographic principle. In the conclusion we formalize the general structure of the plausibility arguments put forward.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.