Abstract
Aims. Coronal sigmoids are important sources of eruptions into interplanetary space, and a handful of models have been proposed to explain their characteristic S shape. However, the coronal X-ray images available to date have generally not had sufficient resolution to distinguish between these models. The goal of the present investigation is to determine whether the new observations from Hinode can help us to make such a distinction. Methods. We present the first observations of a persistent coronal sigmoid obtained with the Hinode X-Ray Telescope (XRT). The excellent angular resolution of XRT (1 arcsec per pixel) and the sigmoid’s location near disk center combined to provide an unprecedented view of the formation and eruption of this phenomenon. We compared the observed morphology with expectations inferred from two popular models of sigmoid formation, the bald-patch separatrix surface model and the kinking flux rope model. Results. The images during the pre-eruptive phase show that the overall S shape of the sigmoid comprises two separate J-shaped bundles of many loops. The straight sections of the two J patterns lie anti-parallel to one another in the middle of the S, on opposite sides of the magnetic polarity inversion line. The images during the eruptive phase reveal that, before any soft X-ray flaring begins, a diffuse linear structure almost as long as the sigmoid lifts off from the middle of the S. It shows slight clockwise rotation. The X-ray flare begins with the appearance of a sheared arcade of short loops, in the area centered between the two J-shaped patterns of the sigmoid. Conclusions. Taken together, the observational findings provide strong support for the bald-patch separatrix surface model for this sigmoid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.