Abstract

Abstract We used Hinode X-Ray Telescope (XRT) and Solar Optical Telescope (SOT) filtergraph (FG) Stokes-V magnetogram observations, to study the early onset of a solar eruption that includes an erupting filament that we observe in TRACE EUV images. The filament undergoes a slow rise for at least 20 min prior to its fast eruption and strong soft X-ray (SXR) flaring; such slow rises have been previously reported, and the new Hinode data elucidate the physical processes occurring during this period. XRT images show that during the slow-rise phase, an SXR sigmoid forms from apparent reconnection low in the sheared core field traced by the filament, and there is a low-level intensity peak in both EUV and SXRs during the slow rise. MDI and SOT FG Stokes-V magnetograms show that the pre-eruption filament is along a neutral line between opposing-polarity enhanced network cells, and the SOT magnetograms show that these opposing fields are flowing together and canceling for at least six hours prior to eruption. From the MDI data we measured the canceling network fields to be $\sim$ 40G, and we estimated that $\sim$10$^{19}$Mx of flux canceled during the five hours prior to eruption; this is only $\sim$5% of the total flux spanned by the eruption and flare, but apparently its tether-cutting cancellation was enough to destabilize the sigmoid field holding the filament and resulted in that field’s eruption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.