Abstract

Terminal hinge axis (THA) determination is recommended in some clinical situations and for some diagnostic purposes. Different methods are described and are available for this task. In particular, circle fitting or iterative trace recording methods, in the conventional process known as the pantographic or Lauritzen method, have mostly been applied in clinical settings and have even been used as exact reference measures in many studies. The aim of this study was to investigate whether the conditions for THA determination by these methods principally allow for the differentiation between a pure rotational movement and a combined translational and rotational movement. A further question relates to how large the uncertainties are if an additional translational movement is present during the first phase of mouth opening or closing. These questions were investigated by an exact simulation. The methods under consideration are seen to be able to detect a pure rotational movement, if one or both of the following conditions are met: a) the traces recorded around the rotational center perform a circlelike motion, and b) a point or pin on the rotational center remains at rest during movement. It can be proven that in the relevant clinical situation these conditions also hold in the case of a combination of translational and rotational movement. Furthermore, small translations of 1.1 mm lead to a deviation of the THA of around ± 6.7 mm, and a translation of 2.2 mm to an uncertainty of even ± 13.5 mm. The significance of these results suggests that the commonly used methods for THA determination should be reevaluated, and the literature on this topic should be carefully scrutinized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.