Abstract
The H-infinity stability analysis and delay-dependent Takagi–Sugeno (T–S) fuzzy dynamic output feedback control are proposed for the T–S fuzzy discrete networked control systems with time-varying communication delay and multipath packet dropouts. T–S fuzzy model is employed to approximate the discrete networked control system with time-varying state delay and external disturbance. Stochastic system theory and Bernoulli probability distribution are employed to describe the time-varying communication delay and multipath packet dropouts. Delay-dependent T–S fuzzy dynamic output feedback controller is designed. The delay-dependent T–S fuzzy dynamic output feedback controller is employed to relax the design conditions and enhance the design flexibility. The delay-dependent Lyapunov–Krasovskii functional, stochastic system theory and Bernoulli probability distribution are introduced to guarantee the stochastic mean-square stability and prescribed H-infinity performance. Some slack matrices are introduced to reduce the computation complexity. Finally, simulation examples are presented to show the effectiveness and advantages of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.