Abstract

This paper proposes a method for prioritizing the replay experience referred to as Hindsight Goal Ranking (HGR) in overcoming the limitation of Hindsight Experience Replay (HER) that generates hindsight goals based on uniform sampling. HGR samples with higher probability on the states visited in an episode with larger temporal difference (TD) error, which is considered as a proxy measure of the amount which the RL agent can learn from an experience. The actual sampling for large TD error is performed in two steps: first, an episode is sampled from the relay buffer according to the average TD error of its experiences, and then, for the sampled episode, the hindsight goal leading to larger TD error is sampled with higher probability from future visited states. The proposed method combined with Deep Deterministic Policy Gradient (DDPG), an off-policy model-free actor-critic algorithm, accelerates learning significantly faster than that without any prioritization on four challenging simulated robotic manipulation tasks. The empirical results show that HGR uses samples more efficiently than previous methods across all tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.