Abstract

Hindered diffusion of solutes is the rate-limiting step in many processes for which random porous media play a central role as providers of adsorbing or reactive interfaces. The key to an optimized layout of these processes is the knowledge of the overall diffusive hindrance factor H(λ) = Deff,H(λ)/Dm, which quantifies the degree to which diffusion through a material (represented by the effective diffusion coefficient Deff,H) is hindered compared with diffusion in the bulk liquid (represented by Dm) in dependence of λ, the ratio of solute size to mean pore size. To arrive at an adequate hindrance factor expression for random mesoporous silica, we use electron tomography to physically reconstruct the mesopore space of three macro-mesoporous silica monoliths. The samples share the same general mesopore shape and topology at varied mean feature size, as established by morphological analysis, and serve as realistic models in pore-scale simulations of hindered diffusion. From a large set of Deff,H(λ) values fo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.