Abstract
The wear resistance of organic coatings has an important role in order to extend their in-service life. Epoxy powder coatings were mixed with nanosilica through ball milling to study their effect on the wear performance after ultraviolet (UV) exposure. Two types of SiO2 nanoparticles were added: hydrophilic (HL) and hydrophobic (HB) at different percentages (0.25–1% by wt.). Modified powders were applied by electrostatic spraying gun on carbon steel sheets. After curing, coatings were exposed to a xenon lamp for 500 h. The surface of coatings was analyzed by scanning electron microscope (SEM). Reciprocating sliding wear tests were performed at room temperature and dry conditions, under 5 N load and 10 Hz frequency. The countermaterial was a 6 mm-stainless steel ball. Wear tracks were analyzed by an optoelectronic microscope and SEM. In order to analyze possible chemical changes, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was performed. Finally, universal hardness was evaluated to study mechanical properties. Results reveal that small amounts of both types of nanosilica, make the epoxy-matrix coatings chemically degrade less than non-reinforced ones under irradiation, increasing their mechanical behavior and thus wear resistance. The 0.75-1HL and the 0.75HB coatings exhibit the best wear performance after UV exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.