Abstract

With the recent explosion in computational catalysis and related microkinetic modeling, the need for a fast yet accurate way to predict equilibrium and rate constants for surface reactions has become more important. Here we present a fast and accurate new method to estimate the partition functions and entropies of adsorbates based on quantum mechanical estimates of the potential energy surface. As with previous approaches, it uses the harmonic oscillator (HO) approximation for most of the modes of motion of the adsorbate. However, it uses hindered translator and hindered rotor models for the three adsorbate modes associated with motions parallel to the surface and evaluates these using an approach based on a method that has proven accurate in modeling the internal hindered rotations of gas molecules. The adsorbate entropies were calculated with this method for four adsorbates (methanol, propane, ethane, and methane) on Pt(111) using density functional theory (DFT) to evaluate the potential energy surface ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call