Abstract

In the current literature, information can mainly be found about free and hindered settling of isometric particles in Newtonian and non-Newtonian fluids. These conclusions cannot be used to describe the sedimentation of non-isometric particle in non-Newtonian fluids. For this reason, we have carried out systematic experiments and calculated the correlation of the hindered settling velocity of a cloud of non-isometric particles in high-viscosity and pseudoplastic liquid. The experiments were performed in transparent model fluids, namely, glycerine (a Newtonian fluid) and an aqueous solution of carboxylmethylcelulose CMC (a non-Newtonian pseudo-plastic liquid). These fluids have similar rheological properties, for example, the fresh fine-grained cementitious composites HPC/UHPC. The experiments were carried out with steel fibers with a ratio of d/l = 0.3/20. The settling velocity was determined for fiber volumes from 1% to 5%. While it is known from previous studies that for spherical particles the hindered settling velocity is proportional to the porosity of a suspension cloud on exponent 4.8, which was confirmed by our verification experiment, for the studied fiber particles it is proportional to the porosity on exponent 22.1. This great increase in the exponent is an effect of both the shape of the particles and, in particular, a mutual influence that arises from their interweaving and connection in the suspension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call