Abstract
The inherent pore-scale heterogeneity of many natural and synthetic porous materials can make it difficult to model and predict porous transport because the underlying microscopic processes are often poorly understood. Here we present the results of single-particle tracking experiments in which we followed the pore-scale diffusion of individual nanoparticles, deep within a three-dimensional porous material of moderate porosity. We observed significant hydrodynamic damping of particle motion at subpore length scales, resulting in heterogeneous and spatially dependent mobility. The accessibility of the void space was strongly dependent on particle size, and related to the heterogeneous hydrodynamics. Our results suggest that pore-scale diffusion is more heterogeneous and volume accessibility more limited than previously expected. The method demonstrated here will enable studies of a broad new class of materials including porous polymers of technological interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.