Abstract
Cyclone generated waves play a significant role in the design of coastal and offshore structures. Instead of conventional numerical models, neural network approach is used in the present study to estimate the wave parameters from cyclone generated wind fields. Eleven cyclones, which crossed the southern east coast of India between 1962 and 1979, are considered for analysis in this paper. The parametric hurricane wave prediction model by Young (1988) [Young, I.R., 1988. Parametric hurricane wave prediction model. Journal of Waterways Port Coastal and Ocean Engineering 114(5), 637–652] is used for hindcasting the wave heights and periods. Estimation of wave heights and periods is carried out using back propagation neural network with three updated algorithms, namely Rprop, Quickprop and superSAB. In neural network, the estimation is carried out using (i) difference between central and peripheral pressure, radius of maximum wind and speed of forward motion of cyclone as input nodes and the wave heights and periods as output nodes and (ii) wind speed and fetch as input nodes and wave heights and periods as output nodes. The estimated values using neural networks match well with those estimated using Young's model and a high correlation is obtained namely (0.99).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.