Abstract
This paper investigates the hindcasting of interdecadal climate events using an ocean circulation model driven by different combinations of time-varying surface flux, sea surface temperature (SST), and sea surface salinity (SSS) data. Data are generated from a control run, against which the subsequent model experiments are compared. The most robust results are obtained using flux boundary conditions on both surface temperature and salinity. For these boundary conditions, model results am relatively insensitive to noise in the surface data and take about 20 years to overcome the imposition of an incorrect initial condition. Model results are much more sensitive to noisy inputs when run using SST and SSS data. To obtain meaningful results, SST data alone are not sufficient; SSS data are also required. This is related to the well-known instability of ocean climate models upon a switch to mixed boundary conditions. Time-varying SSS data cannot be replaced by climatology; using a best-fit T–S relation, to calculate anomalies in SSS from those in SST is also found to give disappointing results. The difficulty of trying to correct for inaccuracies in surface heat flux using SST data, while at the same time using a flux boundary condition on surface salinity, is demonstrated.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.