Abstract
Abstract Hurricane Katrina caused extensive damage to offshore oil and gas production facilities. In this study, the state-of-the-art ocean circulation (the Princeton Ocean Model) and surface wave (Wave Watch III) models, together with high-resolution analyzed winds from NOAA/Hurricane Research Division, are used to simulate the current and wave conditions during Katrina. The model simulation shows large (>15 m) surface waves and strong (>2 m s−1) wind-driven and inertial currents superposed on the Loop Current and Loop Current eddy. The simulated wave fields are verified with surface buoy and satellite altimetry observations; the agreement generally is better than 0.5 m, and the correlation coefficient is above 0.95. Also, while the observed 55-ft significant wave heights on National Data Buoy Center (NDBC) buoy 42040 surpassed the previous record in the Gulf of Mexico, circumstantial evidence suggests that waves as large as 70 ft might have occurred in the storm path. Comparison with the operational ana...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.