Abstract

Previous work using the retrogradely transported immunotoxin, saporin (SAP) conjugated to a monoclonal antibody against dopamine-β-hydroxylase (DBH; DSAP), to selectively lesion norepinephrine (NE) and epinephrine (E) neurons projecting to the medial hypothalamus, demonstrated the essential role of these neurons for appetitive ingestive responses to glucoprivation. Here, we again utilized this lesion to assess the importance of these same neurons for the consummatory phase of glucoprivic feeding. To test consummatory responses, milk was infused intraorally through a chronic cheek fistula until rejected. Appetitive responses were tested in the same rats using pelleted food. Feeding responses to insulin-induced hypoglycemia, 2-deoxy- d-glucose (2DG)-induced blockade of glucose utilization, mercaptoacetate (MA)-induced blockade of fatty acid oxidation, 0.9% saline, and 18-h food deprivation were assessed. Unlike unconjugated SAP controls, the DSAP rats did not increase their food intake in response to glucoprivic challenges in either the pelleted food or the intraoral feeding tests. However, the DSAP rats did not differ from SAPs in their ingestive responses to food deprivation and blockade of fatty acid oxidation. The selective impairment of glucoprivic feeding responses indicates that DSAP did not impair the underlying circuitry required for either appetitive or consummatory ingestive responding but eliminated the mechanism for control of this circuitry specifically by glucoprivation. Results suggest that both appetitive and consummatory responses to glucoprivation are controlled and coordinated by multilevel terminations of the same catecholamine neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call