Abstract

Hin recombinase requires negatively supercoiled DNA for an efficient inversion. We have generated positively supercoiled plasmid DNA using reverse gyrase from Sulfolobus shibatae and subjected it to the Hin-mediated inversion reaction. Both Hin and Fis showed the same DNA binding activity regardless of the superhelical handedness of the substrate plasmid. However, inversion activity on positively supercoiled DNA was less than 1% of negatively supercoiled DNA. Assays designed to probe steps in inversion, showed that on positively supercoiled DNA, Hin was able to cleave the recombination sites with the same efficiency shown on negatively supercoiled DNA but was not able to exchange the cleaved DNA. Based on the theoretical differences between positive and negative supercoiling, our data may suggest that unwinding of the double helix at recombination sites is needed after DNA cleavage for strand exchange to occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.