Abstract
Plume volcanism may sample mantle sources deeper than mid-ocean ridge and arc volcanism. Ocean island basalts (OIBs) are commonly related to plume volcanism, and their diverse isotopic and elemental compositions can be described using a limited number of mantle endmembers. However, the origins and depths of these mantle endmembers are highly debated. Here we show that the HIMU (high μ, μ=238U/204Pb) endmember may reside in the transition zone. Specifically, we report the geochemical signature of a high-pressure multiphase diamond inclusion, entrapped at 420–440 km depth and 1450 ± 50 K, which matches exactly the geochemical patterns of the HIMU-rich OIBs. Since the HIMU component is variably sampled by almost all OIBs, our finding implies that the transition zone causes a major overprint of the geochemical features of mantle plumes. Some mantle plumes, like those feeding Bermuda, St Helena, Tubuai and Mangaia, appear to be dominated by this source. Furthermore, our finding highlights the importance of the transition zone in highly incompatible element budget of the mantle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.