Abstract
Privacy Preserving Data Mining (PPDM) protects the disclosure of sensitive quasi-identifiers of dataset during mining by perturbing the data. This perturbed dataset is then used by trusted Third Party for effective derivation of association rules. Many PPDM algorithms destroy the original data to generate the mining results. It is essential that the perturbed data preserves the statistical inference of the sensitive attributes and minimize the information loss. Existing techniques based on Additive, Multiplicative and Geometric Transformations have minimal information loss, but suffer from reconstruction vulnerabilities. We propose Histogram Modification based method, viz. HiMod-Pert, for preserving the sensitive numeric attributes of perturbed dataset. Our method uses the difference in neighboring values to determine the perturbation factor. Experiments are performed to implement and test the applicability of the proposed technique. Evaluation using descriptive statistic metrics shows that the information loss is minimal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.