Abstract

Abstract. Fine particulate matter with a diameter of less than 2.5 µm (PM2.5) has been used as an important atmospheric environmental parameter mainly because of its impact on human health. PM2.5 is affected by both natural and anthropogenic factors that usually have strong diurnal variations. Such information helps toward understanding the causes of air pollution, as well as our adaptation to it. Most existing PM2.5 products have been derived from polar-orbiting satellites. This study exploits the use of the next-generation geostationary meteorological satellite Himawari-8/AHI (Advanced Himawari Imager) to document the diurnal variation in PM2.5. Given the huge volume of satellite data, based on the idea of gradient boosting, a highly efficient tree-based Light Gradient Boosting Machine (LightGBM) method by involving the spatiotemporal characteristics of air pollution, namely the space-time LightGBM (STLG) model, is developed. An hourly PM2.5 dataset for China (i.e., ChinaHighPM2.5) at a 5 km spatial resolution is derived based on Himawari-8/AHI aerosol products with additional environmental variables. Hourly PM2.5 estimates (number of data samples = 1 415 188) are well correlated with ground measurements in China (cross-validation coefficient of determination, CV-R2 = 0.85), with a root-mean-square error (RMSE) and mean absolute error (MAE) of 13.62 and 8.49 µg m−3, respectively. Our model captures well the PM2.5 diurnal variations showing that pollution increases gradually in the morning, reaching a peak at about 10:00 LT (GMT+8), then decreases steadily until sunset. The proposed approach outperforms most traditional statistical regression and tree-based machine-learning models with a much lower computational burden in terms of speed and memory, making it most suitable for routine pollution monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.