Abstract

ABSTRACT In this paper, we investigate the influence of the plasma surrounding the gravitational lens on the effect of microlensing. In presence of plasma around the lens, the deflection angle is determined by both the gravitational field of the lens and the chromatic refraction in the inhomogeneous plasma. We calculate microlensing light curves numerically for point-mass lens surrounded by power-law density distribution of plasma. A variety of possible curves is revealed, depending on the plasma density and frequency of observations. In the case of significant influence of plasma, the shape of microlensing light curve is strongly deformed in comparison with vacuum case. If the refractive deflection is large enough to compensate or to overcome the gravitational deflection, microlensing images can completely disappear for the observer. In this case, the remarkable effect occurs: formation of a ‘hole’ instead of a ‘hill’ in the center of microlensing light curve. Observational prospects of ‘hill-hole’ effect in different microlensing scenarios are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call