Abstract

A novel cropping system for potato was tested for two consecutive years under normal Dutch agronomic conditions. Seedlings from two experimental genotypes of hybrid true potato seeds were produced in a greenhouse nursery and transplanted into the field 5 weeks after sowing to assess tuber yield levels and to study effects of hilling on tuber yield and number, tuber size distribution and tuber greening. Field experiments had a split-plot design with hilling treatments as the main plots and genotypes as the sub-plots. Final harvest was at 122 and 132 days after transplanting in 2017 and 2018, respectively. Hybrid seedlings were transplanted into small initial ridges and irrigated straight after planting. Three hilling treatments were applied between transplanting and 100% canopy cover. Treatment ‘zero hilling’ did not receive any additional hilling after transplanting. Treatments ‘double hilling’ and ‘triple hilling’ received two and three additional hilling treatments, respectively. Total tuber yields at final harvest in both years were not affected by the hilling treatments. Yields for the respective genotypes were 26 and 30 Mg/ha in 2017 and 25 and 32 Mg/ha in 2018. Total tuber numbers were only affected by hilling treatments in 2017, where under hilled conditions, plants produced more tubers compared with plants under zero hilling. Plants under zero hilling yielded more tubers in size class > 40 mm compared with triple hilling in 2017. In 2018, no significant effects of hilling on tuber numbers were found, but the trend was similar to that in 2017.

Highlights

  • The introduction of hybrid breeding at the diploid level in potato (Solanum tuberosum L.) will revolutionize the methods applied by potato breeders in the near future (Stokstad 2019) and subsequently will drastically alter potato multiplication practices (Jansky et al 2016)

  • This research aimed to study: (1) whether hilling of the ridge has an effect on tuber fresh weight, tuber number, tuber size distribution, tuber dry-matter percentage and tuber greening; and (2) whether hybrid transplants derived from a greenhouse nursery are able to achieve reasonable yields under normal Dutch potato cultivation practices

  • An increase in the number of hillings resulted in a significant increase in the area of the ridge profile and in the total ridge height from furrow to ridge-top (Table 1)

Read more

Summary

Introduction

The introduction of hybrid breeding at the diploid level in potato (Solanum tuberosum L.) will revolutionize the methods applied by potato breeders in the near future (Stokstad 2019) and subsequently will drastically alter potato multiplication practices (Jansky et al 2016). Hybrid breeding accelerates the process of introducing desired traits into the breeding material to improve potato yields, pathogen resistances and tuber quality aspects. It enhances the possibilities for combining traits of interest in one new cultivar. A cross between two homozygous parents results in F1 botanical potato seeds, commonly called true potato seeds (TPS), that are genetically identical (Bachem et al 2019) These hybrid true seeds may transform the propagation of potatoes throughout north-western Europe and North America (Jansky et al 2016; Stokstad 2019). Hybrid TPS could become the foundation of novel potato planting materials at the start of new high-tech potato cropping systems (Edelenbosch and Munnichs 2020)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call