Abstract

The ratio of the steady-state kinetic Hill coefficients of two different effectors equals (under some rather weak general assumptions) the ratio in which the effectors displace each other from an enzyme. This principle can make implications of experimental allosteric enzyme kinetic data immediately apparent. We can use it to find that one molecule of the allosteric inhibitor of dCMP aminohydrolase, at moderately high effector concentrations, displaces one molecule of substrate, or one molecule of activator, whereas at very high concentrations, one molecule of inhibitor displaces two of substrate. Further use of the principle suggests that substrate, at high concentrations, binds to activator sites. However, ratios of substrate, activator, and inhibitor Hill coefficients are incompatible with a simple model of activation in which substrate and activator are bound to the same conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.