Abstract

In the last decade, pharmaceutical regulatory agencies are focused on monitoring and evaluation of trace-level genotoxic impurities (GTIs) in drug substances, which requires manufacturers to deliver innovative approaches for their analysis and control. GTIs in the low p.p.m. level rising from the process of drug production have to be positively identified and quantified. Therefore, sensitive and selective analytical methods are necessary for required quantification level of these GTIs. Unfortunately, general guidance on how to develop strategy of the analysis and control of GTIs is currently missing in the pharmaceutical industry. Therefore, practical example of the analytical control of 2-chloro-N-(2-chloroethyl)ethanamine GTI in the vortioxetine (VOR) manufacturing process was demonstrated in this work. QDa mass detection with electrospray ionization in selected-ion recording mode was utilized for quantitation of GTIs. The method of hydrophilic interaction liquid chromatography coupled with mass spectrometry detection (HILIC-MS) was validated as per International Conference on Harmonization guidelines and was able to quantitate GTIs at 75 p.p.m. with respect to VOR. The HILIC-MS method was achieved using a Primesep B column (150 × 4.6 mm, 5.0 µm; Sielc, USA) using mobile phase consisting of 10 mM ammonium formate buffer pH 3.0 and acetonitrile (5 : 95, v/v) at 0.8 mL/min flow rate. The QDa mass detector was operated in the positive ion mode. Quadrupole mass analyzer was employed in selected-ion monitoring mode using target ion at m/z 142 as [M+H](+).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call