Abstract

The Horodecki family employed the Jaynes maximum-entropy principle, fitting the mean (b_{1}) of the Bell-CHSH observable (B). This model was extended by Rajagopal by incorporating the dispersion (\sigma_{1}^2) of the observable, and by Canosa and Rossignoli, by generalizing the observable (B_{\alpha}). We further extend the Horodecki one-parameter model in both these manners, obtaining a three-parameter (b_{1},\sigma_{1}^2,\alpha) two-qubit model, for which we find a highly interesting/intricate continuum (-\infty < \alpha < \infty) of Hilbert-Schmidt (HS) separability probabilities -- in which, the golden ratio is featured. Our model can be contrasted with the three-parameter (b_{q}, \sigma_{q}^2,q) one of Abe and Rajagopal, which employs a q(Tsallis)-parameter rather than $\alpha$, and has simply q-invariant HS separability probabilities of 1/2. Our results emerge in a study initially focused on embedding certain information metrics over the two-level quantum systems into a q-framework. We find evidence that Srednicki's recently-stated biasedness criterion for noninformative priors yields rankings of priors fully consistent with an information-theoretic test of Clarke, previously applied to quantum systems by Slater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.