Abstract

Time-frequency and transient analysis have been widely used in signal processing and faults diagnosis. These methods represent important characteristics of a signal in both time and frequency domain. In this way, essential features of the signal can be viewed and analyzed in order to understand or model the faults characteristics. Historically, Fourier spectral analyses have provided a general approach for monitoring the global energy/frequency distribution. However, an assumption inherent to this method is the stationary and linear of the signal. As a result, Fourier methods are not generally an appropriate approach in the investigation of faults signals with transient components. This work presents the application of a new signal processing technique, empirical mode decomposition and the Hilbert spectrum, in analysis of vibration signals and gear faults diagnosis for a machine tool. The results show that this method may provide not only an increase in the spectral resolution but also reliability for the gear faults diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.