Abstract
In this work, we present a new approach for shift invariant complex wavelet analysis of neuroelectric signals. A key idea is to preprocess the signal with the Hilbert transformer to yield an analytic signal, which is then wavelet transformed using the linear phase complex scaling and wavelet filters. In different scales, the total energy of the wavelet transform coefficients is shift invariant. The decimated analytic wavelet coefficients suffer no aliasing effects, which are predominant in conventional wavelet analysis. We show the usefulness of the present method in multi-scale analysis of the neuroelectric signal waveforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.