Abstract
Let S be the first degeneracy locus of a morphism of vector bundles corresponding to a general matrix of linear forms in \({\mathbb {P}}^s\). We prove that, under certain positivity conditions, its Hilbert square \({{\mathrm{Hilb}}}^2(S)\) is isomorphic to the zero locus of a global section of an irreducible homogeneous vector bundle on a product of Grassmannians. Our construction involves a naturally associated Fano variety, and an explicit description of the isomorphism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Rendiconti del Circolo Matematico di Palermo Series 2
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.