Abstract
Abstract A Hilbert spectrum analyzer was developed and characterized with monochromatic radiation sources at the frequency range from 30 GHz to 1 THz. The analyzer was based on a high- Tc frequency-selective Josephson detector and cooled to temperatures of 60-80K by a Stirling cryocooler. The instrumental function of the spectrum analyzer was shown to be of Lorentz type and within accuracy up to 0.1% without any harmonic and subharmonic contributions. Spectral characterization of THz sources, based on frequency multiplication of input microwave radiation by Schottky diodes, was demonstrated for input frequencies from 10 to 20 GHz with a total scanning time as low as 50 ms per scan. The developed Hilbert spectrum analyzer might be considered as a compact and high-speed substitute of conventional Fourier spectrometers, which are used for characterization of THz radiation sources in combination with liquid-helium-cooled silicon bolometers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.