Abstract

A generalization of the Karhunen-Loève (KL) transform to Hilbert spaces is developed. It allows one to find the best low-dimensional approximation of an ensemble of images with respect to a variety of distance functions other than the traditional mean square error (L2 norm). A simple and intuitive characterization of the family of Hilbert norms in finite-dimensional spaces leads to an algorithm for calculating the Hilbert-KL expansion. KL approximations of ensembles of objects and faces optimized with respect to a norm based on the modulation transfer function of the human visual system are compared with the standard L2 approximations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.