Abstract
We study the algebraic structure of the mesonic moduli spaces of bipartite field theories by computing the Hilbert series. Bipartite field theories form a large family of 4dN\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 supersymmetric gauge theories that are defined by bipartite graphs on Riemann surfaces with boundaries. By calculating the Hilbert series, we are able to identify the generators and defining generator relations of the mesonic moduli spaces of these theories. Moreover, we show that certain bipartite field theories exhibit enhanced global symmetries which can be identified through the computation of the corresponding refined Hilbert series. As part of our study, we introduce two one-parameter families of bipartite field theories defined on cylinders whose mesonic moduli spaces are all complete intersection toric Calabi-Yau 3-folds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.