Abstract

Effective Field Theory (EFT) technique is one of the most elegant ways to capture the impact of high scale theory, if any, at some low energy by incorporating higher mass dimensional (≥5) effective operators ( mathcal{O} i). The low energy EFT is described in terms of only light degrees of freedom (DOF) which can appear on-shell. An essential task while developing the EFT framework is to compute these mathcal{O} i’s. Hilbert Series (HS) is a novel and mathematically robust method to construct the complete set of gauge invariant independent, effective operators. The HS requires the knowledge of the transformation properties of the light DOF and the covariant derivatives under the internal gauge symmetries and conformal groups. The Hilbert Series method, by its virtue, automatically takes care of the redundancies in the operator set due to the Equations of Motion (EOMs) of fields and Integration by Parts (IBPs) with impeccable accuracy.In this paper, we have adopted this methodology to construct the complete set of independent operators up to dimension-6 in the “Warsaw”-like basis for two different Beyond Standard Model scenarios — Two Higgs Doublet Model (2HDM) and Minimal Left-Right Symmetric Model (MLRSM). For both these cases, we have calculated the corrections to the scalar, gauge boson and fermion mass spectra due to the dimension-6 operators. The additional contributions to all the Feynman vertices are computed and their impact on different observables, namely Weak mixing angle, Fermi constant, ρ and oblique (S, T, U) parameters. We have further discussed how the magnetic moments of charged leptons and production and decay of the massive BSM particles, e.g., charged scalar and different rare processes are affected in the presence of effective operators. We have also constructed the effective scalar four-point interactions and commented on the possible reinvestigation of the theoretical constraints, e.g., unitarity and vacuum stability within these frameworks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.