Abstract
AbstractIn the context of Hilbert's tenth problem, an outstanding open case is that of complex entire functions in one variable. A negative solution is known for polynomials (by Denef) and for exponential polynomials of finite order (by Chompitaki, Garcia‐Fritz, Pasten, Pheidas, and Vidaux), but no other case is known for rings of complex entire functions in one variable. We prove a negative solution to the analogue of Hilbert's tenth problem for rings of complex entire functions of finite order having lacunary power series expansion at the origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.