Abstract

In this paper we analyze the Hilbert boundary-value problem of the theory of analytic functions for an ( N + 1 ) (N+1) -connected circular domain. An exact series-form solution has already been derived for the case of continuous coefficients. Motivated by the study of the Hall effect in a multiply connected plate we extend these results by examining the case of discontinuous coefficients. The Hilbert problem maps into the Riemann-Hilbert problem for symmetric piece-wise meromorphic functions invariant with respect to a symmetric Schottky group. The solution to this problem is derived in terms of two analogues of the Cauchy kernel, quasiautomorphic and quasimultiplicative kernels. The former kernel is known for any symmetric Schottky group. We prove the existence theorem for the second (quasimultiplicative) kernel for any Schottky group (its series representation is known for the first class groups only). We also show that the use of an automorphic kernel requires the solution to the associated real analogue of the Jacobi inversion problem, which can be bypassed if we employ the quasiautomorphic and quasimultiplicative kernels. We apply this theory to a model steady-state problem on the motion of charged electrons in a plate with N + 1 N+1 circular holes with electrodes and dielectrics on the walls when the conductor is placed at a right angle to the applied magnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.