Abstract

In this paper, the recently developed analytical mode decomposition with a constant or time-varying cutoff frequency is extended into the decomposition of a non-stationary discrete time sequence. The discretization of the signal and the selection of the cutoff frequency may cause the failure of low frequency component extraction. In this study, to eliminate the effects of the signal discretization, the one-step, two-step, and four-step low-pass filters with cutoff frequencies are proposed. Based on the theoretical derivation, the previous one-step low-pass filter is effective only when the cutoff frequency is not greater than a quarter of the sampling frequency and the maximum frequency of the signal not greater than a half of the sampling frequency. In this study, if the cutoff frequency is less than or equal to a quarter of the sampling frequency, a two-step low-pass filter is proposed to extract the low frequency component. If the cutoff frequency is greater than a quarter of the sampling frequency, a four-step low-pass filter with frequency shifting process is proposed. When the time-varying cutoff frequency is not always larger than or less than a quarter of the sampling frequency, a sufficient condition, which is the sampling frequency is greater than four times of the maximum frequency of the signal component, is provided in this study. Two numerical examples are used to validate the effectiveness of the proposed low-pass filters. Both the theoretic derivation and numerical simulations show that the proposed filters can analytical extract the discrete low frequency component with an appropriate cutoff frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call