Abstract

The Hilbert-Huang transform working principle is used to develop advanced single-frame and two-frame Bessel fringe pattern generation and demodulation algorithms especially tailored to enhance full-field vibration studies using time-averaged interferometry. The Bessel fringe pattern, named as the Besselogram, is understood as calculated amplitude modulation/contrast variation map of the time-averaged interferogram intensity distribution. Proposed Besselogram processing techniques are computationally fast and robust to fringe pattern imperfections and environmental disturbances encountered in interferometric studies of vibrating micro-objects. The advanced fast adaptive bidimensional empirical mode decomposition scheme is employed to filter interferograms, Bessel fringes and their phase maps. Reported Bessel fringe pattern analysis method possesses unique ability to determine both vibration phase and amplitude distribution maps from a single time-averaged interferogram. Comprehensive numerical simulations corroborate advantageous features of proposed methods. Experimental evaluation performed for two resonant modes of a silicon micro-membrane is enclosed for completeness of the analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.