Abstract

The so-called r r -analytic functions are a subclass of p p -analytic functions and are defined by the generalized Cauchy-Riemann system with p ( r , z ) = r p(r,z)=r . In the system of toroidal coordinates, the real and imaginary parts of an r r -analytic function are represented by Mehler-Fock integrals with densities, which are assumed to be meromorphic functions. Hilbert formulas, establishing relationships between those functions, are derived for the domain exterior to the contour of a biconvex lens in the meridional cross-section plane. The derivation extends the framework of the theory of Riemann boundary-value problems, suggested in our previous work, to solving the three-contour problem for the case of meromorphic functions with a finite number of simple poles. For numerical calculations, Mehler-Fock integrals with Hilbert formulas reduce to the form of regular integrals. The 3D problem of the axially symmetric steady motion of a rigid biconvex lens-shaped body in a Stokes fluid is solved, and the Hilbert formula for the real part of an r r -analytic function is used to express the pressure in the fluid via the vorticity analytically. As an illustration, streamlines and isobars about the body, the vorticity and pressure at the contour of the body and the drag force exerted on the body by the fluid are calculated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.