Abstract

Let (X, L) be a complex polarized threefold which is a conic fibration over a smooth surface. The complex affine cubic Γ representing the Hilbert curve of (X, L) is studied, paying special attention to its reducibility. In particular, Γ contains a specific line ℓ 0 if and only if X has no singular fibers. This leads to characterize the existence of a triple point simply in terms of numerical invariants of X. Other lines may cause the reducibility of Γ, which in this case depends also on the polarization. This situation is analyzed for a special class of conic fibrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.