Abstract

Temperature maintenance and detection are essential for the survival and perpetuation of any species. This review is focused on thermosensation; thus a detailed and traced explanation of the anatomical and physiological characteristics of each component of this sensation is given. First, the proteins that react to temperature changes are identified; next, the nature of the neurons involved in thermosensation is described; and then, the pathways from the skin through the spinal cord to the brain are outlined. Finally, the areas of the brain and their interconnections where thermoperception arises are explained. Transduction of the external and internal temperature information is essentially mediated by the transient receptor potential ion channels (TRPs). These proteins are embedded in the neurons' membrane and they hyper- or de-polarize neurons in function of the intrinsic voltage and the temperature changes. There are distinct TRP sensors for different temperature ranges. Interestingly, the primary afferent neurons have either cold or hot receptors, so they are dedicated separately to cold or hot sensation. The information is transmitted by different pathways from the skin to the brain, where it either remains separated or is integrated to generate a response. It seems that both the determination of how thermoperception is produced and how we interact with the world are dependent on the particular arrangement and nature of the components, the way of transduction of information and the communication between these elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call