Abstract
This paper presents a circuit-based high-voltage p-channel metal-oxide-semiconductor (HV-PMOS) transistor model that includes a vertical parasitic p-n-p bipolar transistor and a procedure for extraction of its model parameters. HV-PMOS transistors are subjected to conducted radio frequency (RF) interference at the source pin by using the direct power-injection method. The results reveal complex behavior when the power level of RF interference is varied. This behavior is caused by both nonlinear characteristics of the intrinsic MOS transistor and turn-on of the parasitic p-n-p bipolar transistor at higher RF power levels. The impact of strong conducted RF interference up to 20 dBm is modeled accurately in the frequency range from 1 MHz up to 1 GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Electromagnetic Compatibility
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.